Meniscus arrest dominated imbibition front roughening in porous media with elongated pores
نویسندگان
چکیده
During spontaneous imbibition, a wetting liquid is drawn into a porous medium by capillary forces. Recently, anomalous scaling properties of front broadening during spontaneous imbibition of water in Vycor glass, a nanoporous medium, were reported. The mean height and the width of the propagating front increase with time t both proportional to t. We argue that this anomalously large roughening exponent of β = 1/2 is due to long-lasting meniscus arrests, when at pore junctions the meniscus propagation in one or more branches comes to a halt when the Laplace pressure of the meniscus exceeds the hydrostatic pressure within the junction. From this hypothesis we derive the scaling relations for the emerging arrest time distribution in random pore networks and show that the average front width is proportional to the height yielding a roughness exponent of exactly β = 1/2 as measured in the Vycor glass imbibition experiments. Extensive simulations of a random pore network model confirm these predictions. Finally, using a microfluidic setup as well as molecular dynamics simulations on the nanoscale, the basic hypothesis of the scaling theory is confirmed by demonstrating the existence of arrest events in Y-shaped junctions, analyzing them quantitatively and comparing them with the theoretical predictions.
منابع مشابه
Scaling theory for spontaneous imbibition in random networks of elongated pores.
We present a scaling theory for the long time behavior of spontaneous imbibition in porous media consisting of interconnected pores with a large length-to-width ratio. At pore junctions, the meniscus propagation in one or more branches can come to a halt when the Laplace pressure of the meniscus exceeds the hydrostatic pressure within the junction. We derive the scaling relations for the emergi...
متن کاملAnomalous front broadening during spontaneous imbibition in a matrix with elongated pores.
During spontaneous imbibition, a wetting liquid is drawn into a porous medium by capillary forces. In systems with comparable pore length and diameter, such as paper and sand, the front of the propagating liquid forms a continuous interface. Sections of this interface advance in a highly correlated manner due to an effective surface tension, which restricts front broadening. Here we investigate...
متن کاملMeniscus arrest during capillary rise in asymmetric microfluidic pore junctions.
The capillary rise of liquid in asymmetric channel junctions with branches of different radii can lead to long-lasting meniscus arrests in the wider channel, which has important implications for the morphology and dynamical broadening of imbibition fronts in porous materials with elongated pores. Using a microfluidic setup, we experimentally demonstrate the existence of arrest events in Y-shape...
متن کاملApplication of Homotopy Perturbation Method to Nonlinear Equations Describing Cocurrent and Countercurrent Imbibition in Fractured Porous Media
In oil industry, spontaneous imbibition is an important phenomenon in recovery from fractured reservoirs which can be defined as spontaneous uptake of a wetting fluid into a porous solid. Spontaneous imbibition involves both cocurrent and countercurrent flows. When a matrix block is partially covered by water, oil recovery is dominated by cocurrent imbibition i.e. the production of non wettin...
متن کاملA New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media
Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...
متن کامل